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Abstract
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model results. To understand why, we recast the CRC model as a more general random
coefficient model in which the returns to hybrid adoption are restricted to be linear
in comparative advantage. This reveals that the key structural parameter in the CRC
model (φ) is prone to a weak identification problem. We then propose a procedure to
conduct weak-identification robust inference on φ using test inversion. Only with this
robust procedure accounting for weak identification are we able to reconcile our results
with the original Suri (2011) results.
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1 Introduction

In an influential paper, Suri (2011) addresses why many Sub-Saharan African farmers still use

traditional farming techniques despite higher returns from modern agricultural technologies.

Existing literature identifies market frictions like credit constraints, uninsured risk, and

incomplete information as likely causes.1 Suri (2011) instead attributes this to heterogeneous

returns to adoption stemming from time-invariant unobservables.

Suri (2011) introduces a specific restriction on heterogeneous returns to hybrid maize

adoption, which we call the Linearity in Comparative Advantage (LCA) restriction.2 The

key structural parameter, φ, in this correlated random coefficient (CRC) model indicates the

slope of this linear relationship.

Using a Kenyan panel dataset in which farmers are observed growing either hybrid or

non-hybrid maize, Suri (2011) finds negative and significant φ estimates, implying that

farmers with the lowest non-hybrid productivity gain the most from hybrid adoption. She

then extrapolates these estimated returns, using the LCA restriction, to non-adopters. Our

reanalysis fails to replicate these negative and significant φ estimates using Suri (2011)’s

CRC approach. Reliable parameter estimates from a model like Suri (2011) can potentially

adjudicate among competing prescriptions and interventions that aim to encourage non-

adopters to adopt productivity-enhancing technologies. Given these policy implications,

valid inference about key parameters in this model can be consequential.

We investigate these discrepancies and the potential for weak identification of φ.3 We

show that the CRC model in Suri (2011) is a restricted version of a group random coefficient

(GrRC) model that imposes the LCA restriction. The unrestricted GrRC model helps detect

and diagnose the weak-identification problem. We then propose a weak-identification robust

procedure for inference on the LCA parameter using test inversion. A simulation study

demonstrates our procedure’s finite-sample performance.

Finally, we reanalyze Suri (2011) using our GrRC approach. Our results suggest the

presence of weak identification. Our weak-identification robust confidence intervals for φ are

1Surveys include Feder et al. (1985); Foster and Rosenzweig (2010); Magruder (2018); Jack (2013).
2Verdier (2020) shows that the approach of Suri (2011) relies on a linear extrapolation that is valid if

the factors that determine selection other than the treatment effect are uncorrelated with outcomes, and
proposes a more robust extrapolation approach that allows for selection into treatment to be correlated with
treatment effects as well as (a subset of) covariates.

3It is worth noting that Suri (2011) discusses ways of estimating φ as a combination of production
function reduced-form parameters and recognizes that identification of φ relies on a specific restriction on
these parameters. See the discussion in Section 4.5.1 in Suri (2011), where the author also informally assesses
whether the denominator in these reduced-form expressions is bounded away from zero.
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negative and overlap with Suri (2011)’s original point estimates. This suggests that, after

accounting for weak identification, our results align with Suri (2011)’s main finding.

2 Reanalysis of Suri (2011)

2.1 Data

We use the same panel dataset of rural Kenyan households as Suri (2011), collected by the

Tegemeo Institute of Agricultural Policy and Development.4 Our dataset closely resembles

the original dataset, with minor differences: we have 1,197 households instead of 1,202;

further, small differences suggest slight variations in the composition of the sample or variable

construction procedures.5 Appendix A documents the steps we take to match the original

paper’s dataset and compares summary statistics.

We follow Suri (2011) in constructing variables. Maize yield is the ratio of (self-reported)

maize harvest to plot size.6 Technology adoption trajectories and fertilizer use are based on

whether households report using hybrid seed or fertilizer in a given year. We control for the

same demographic and production variables as Suri (2011).

2.2 Reanalysis Results

Table 1 reports the OLS and fixed effects (FE) specifications that Suri (2011) uses to estimate

average yield advantages of hybrid maize under the assumption of homogeneous returns.

Panel A shows the original paper’s point estimates, while Panel B shows our reanalysis.7

Our results are statistically indistinguishable from Suri (2011).

The crux of our reanalysis is estimating the CRC model and the LCA parameter, φ. We

briefly present this model before discussing our results (for more details, see Suri (2011)).

The CRC model is given by:

yit = τi + θi + (β + φθi)hit + x′itγ + hitx
′
itδ + εit, (1)

where yit is log of maize yield for household i at time t; τi is farmer i’s absolute advantage,

4Tegemeo Institute makes the data available to researchers subject to a brief application form.
5We obtained our data from Tegemeo Institute and followed the author’s data cleaning documentation.
6This is not a measure of economic returns, as it does not account for input costs. We assume, as in Suri

(2011), that input costs other than hybrid seeds are constant across sectors.
7The results in Panel A correspond to Table IIIA in Suri (2011).
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assumed to be (mean) independent of technology adoption and covariates (i.e., E[τi|hi, xi] =

E[τi]), εit is an idiosyncratic error term with E[εit|hi, xi, τi, θi] = 0, and θi can be correlated

with the individual’s adoption history. The adoption history for individual i is denoted by

hi = (hi1, . . . , hiT ), and xi = (xi1, . . . , xiT ) denotes the time series of covariates. To estimate

different means across adoption histories in the CRC model following Chamberlain (1984),

a linear projection of θi onto a fully saturated model of adoption histories is used:

θi = λ0 + λ1hi1 + λ2hi2 + λ3hi1hi2 + ηi. (2)

The CRC model results are in Table 2, estimated using the Stata package from Barriga-

Cabanillas et al. (2018). Despite using nearly identical data to Suri (2011), we only replicate

the estimates for λ1 and λ2. Our φ estimates are mostly insignificant, suggesting no de-

tectable patterns of comparative advantage to hybrid maize production.

Our inability to reproduce this key finding in Suri (2011) is unexpected and apparently

due to trivial differences in the data. To assess the sensitivity of the CRC estimates to

sample composition, we re-estimate the model when randomly dropping 10 households from

the sample across 10,000 simulations. Figure 1 presents the resulting distribution of CRC

estimates of φ, which highlights significant sensitivity. This motivates us to introduce a more

general model that includes the Suri (2011) CRC model as a special case and demonstrates

the potential for weak identification of the key LCA parameter.

3 A Group Random Coefficient (GrRC) Alternative

We start with an unrestricted random coefficient model that nests the LCA restricted model

as a special case. We then show how the LCA parameter, φ, can be identified from a

restriction on a GrRC model. This model highlights the potential for weak identification of

φ and allows us to propose a weak-identification robust inference procedure for it.

3.1 Unrestricted Random Coefficient Model

Suppose that (log) yield is a function of hybrid adoption, hit, farmer ability, ai, and id-

iosyncratic shocks, εit, given by yit = f(hit, ai) + εit for i = 1, . . . , n and t = 1, . . . , T . For

simplicity, we consider a model without covariates, but our results extend to the inclusion
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of exogenous, additively separable covariates as in (1).8 As in Suri (2011), we maintain the

strict exogeneity assumption, E[εit|hi, ai] = 0, where hi = (hi1, . . . , hiT ). Since hit is a binary

variable, we can write this as a random coefficient model

yit = µi + ∆ihit + εit, (3)

where µi ≡ f(0, ai) denotes farmer i’s expected (log) yield without adoption and ∆i ≡
f(1, ai) − f(0, ai) farmer i’s expected returns to hybrid maize adoption. This model nests

the CRC model of Suri (2011) as a special case if we impose two restrictions: (1) µi = τi + θi

and (2) ∆i = β + φθi. In addition, we normalize E[θi] = 0 such that E[µi] = E[τi].

3.2 GrRC Model

Implementing the GrRC approach relies on the fact that with a binary variable and finite

number of time periods, there is a finite number of adoption histories, h ≡ (h1, . . . , hT ) ∈
H = {0, 1}T . For Suri (2011)’s two-period case, we can define H = {0, 1}2. This includes the

set of switcher trajectories (HS = {{0, 1}, {1, 0}}), respectively called joiners and leavers,

and the set of stayer trajectories (Hc
S = {(0, 0), (1, 1)}, respectively called never-adopters

and always-adopters.

Integrating the unrestricted random coefficient model (3) with respect to ai|hi yields the

following conditional mean model under strict exogeneity, E[εit|hi, ai] = 0,

E[yit|hi = h] = µh + ∆hht, (4)

where µh ≡ E[µi|hi = h] = E[f(0, ai)|hi = h], ∆h ≡ E[∆i|hi = h] = E[f(1, ai)−f(0, ai)|hi =

h], and ht is the tth element of h for t = 1, 2. By the time homogeneity of µh and ∆h, we can

identify the average returns to adoption for subpopulations that we observe adopting and

not adopting hybrids in our data, i.e., the joiners and leavers. We can only identify µ(0,0) for

the never-adopters and κ(1,1) = µ(1,1) + ∆(1,1) for the always-adopters.

Using the following GrRC model, we can consistently estimate all the above objects using

yit =
∑

h∈H\(1,1)

µh1{hi = h}+
∑
h∈HS

∆hhit1{hi = h}+ κ(1,1)hit1{h = (1, 1)}+ εit. (5)

8In supplementary analysis available upon request, we augment our approach to allow for endogenous
covariates following Suri (2011).
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An advantage of the GrRC model relative to the reduced form of the CRC model in Suri

(2011) is that all of the GrRC coefficients have economic meaning: µh is the average yield

without hybrid adoption for subpopulation h, ∆h is the average return to adoption for

switcher subpopulation h, and κ(1,1) is the average yield with hybrid for the always-adopters.

3.3 Unrestricted GrRC Model and LCA Parameter

Next, we impose the LCA restriction on the GrRC model, specifically ∆i = β + φθi, and

illustrate how the unrestricted model can indicate potential identification concerns for φ, the

LCA parameter. We first establish the relationship between parameters in the unrestricted

GrRC model and those in the Suri (2011) model.

Proposition 1. Let yit = µi + ∆ihit + εit. Assume µi = τi + θi, ∆i = β + φθi, E[θi] = 0,

E[τi|hi] = E[τi], E[εit|hi, τi, θi] = 0, the following equalities hold for h, h′ ∈ H = {0, 1}T ,

(i) ∆h = β + φθh,

(ii) µh − µh′ = θh − θh′,

(iii) ∆h −∆h′ = φ
(
µh − µh′

)
, for h 6= h′.

where θh = E[θi|hi = h].

The conditions required for the above proposition are imposed in Suri (2011). The proof

of (i) follows from the definition of ∆i and ∆h as its conditional expectation:

∆h = E[∆i|hi = h] = β + φE[θi|hi = h] = β + φθh. (6)

The proof of (ii) follows from the mean independence restriction, E[τi|hi] = E[τi]. Proposi-

tion 1 (iii) follows from (i) and (ii).

If µh 6= µh′ , we can re-write φ as the ratio of difference in returns to adoption for different

subpopulations to the difference in their comparative advantage. Since we can identify both

µh and ∆h for switcher subpopulations, φ is identified as follows in the two-period case when

µ(1,0) 6= µ(0,1),

φ =
∆(1,0) −∆(0,1)

µ(1,0) − µ(0,1)

. (7)
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This ratio points to the source of potential weak-identification for φ. As we illustrate numer-

ically in Section 3.5, this issue emerges when the difference in average yield without adoption

for joiners and leavers is relatively small.9 The unrestricted GrRC model lets us estimate

both parameters without imposing the LCA restriction, similar to the first stage of an in-

strumental variables (IV) regression in terms of detecting potential identification concerns

(see Section 3.6 for an illustration). Unlike the first stage of an IV, however, the unrestricted

GrRC has an economic interpretation and indicates the degree of response heterogeneity to

technology adoption, albeit only for the switcher subpopulations.

3.4 Weak-identification Robust Inference on φ

In practice, φ may be weakly identified, as in our empirical application (see Section 3.6). We

use the restrictions on the LCA parameter from Proposition 1 to conduct weak-identification

robust inference on this key structural parameter. We propose a weak-identification robust

confidence interval for φ based on inverting Wn(φ0), the Wald statistic, of

H0 : ∆h −∆h′ = φ0

(
µh − µh′

)
for h ∈ HS, h′ ∈ HS, h 6= h′, (8)

where HS = {h ∈ H : 0 <
∑T

t=1 ht < T}. Assuming sufficient regularity conditions such

that Wn(φ0)
d−→

H0:φ=φ0
χ2
|HS |−1, the (1− α)% confidence interval is defined as

Cα = {φ0 ∈ Φ : Wn(φ0) < cα,|HS |−1} (9)

where Φ is a parameter space, cα,|HS |−1 is the (1 − α)-quantile of the χ2
|HS |−1 distribution.

Since φ is a scalar parameter, we can compute the confidence interval with a fine grid search.10

3.5 Simulations

A small-scale simulation study illustrates the weak-identification concern and our proposed

weak-identification-robust inference procedure. We consider a simple two-period model that

9If φ is identified, we can also identify µ(1,1), which allows us to identify β and θh for all h ∈ H.
Let πh = P (hi = h) for h ∈ H. Note that E[µi] =

∑
h∈H πhµh. Since E[θi] = 0, E[µi] = E[τi] and

θh = µh−
∑
h∈H µh. Since ∆h = β+φθh, we can therefore also identify β = ∆(0,1)−φθ(0,1) = ∆(1,0)−φθ(1,0).

10With more than two switcher subpopulations, as in the T > 2 case, the confidence interval may be empty
if the over-identifying restrictions are violated. This is reminiscent of the behavior of the Anderson-Rubin
confidence sets in the weak-instrument setting with over-identifying restrictions (Andrews et al., 2019). In
our context, the over-identifying restrictions arise from assuming that φ is time-invariant. One empirically
compelling approach to address this issue is to allow this parameter to vary across time.
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satisfies the LCA restriction described in Table 3. In addition to the CRC estimator and the

weak-identification robust inference procedure, we also include the GrRC model with the

LCA restriction (restricted GrRC):11

yit =
∑

h∈H\(1,1)

µh + ∆(0,1)hit + φ(µ(1,0) − µ(0,1))hit1{hi = (1, 0)}

+
(
µ(1,1) + φ

(
µ(1,1) − µ(0,1)

))
hit1{hi = (1, 1)}+ εit. (10)

We include this estimator for completeness, but acknowledge that it will suffer from the same

weak-identification problem as the CRC estimator.

Table 3 presents simulation summary statistics that illustrate how a small difference

between µ(0,1) and µ(1,0), can lead to a weak-identification problem for φ. Both the CRC

and restricted GrRC estimators suffer from severe bias, which worsens when the difference

between µ(0,1) and µ(1,0) is small. For both estimators, weak identification leads the standard

error to overestimate the simulation standard deviation.

We then compare the coverage probabilities for the weak-identification robust 95% CI

with those obtained from the CRC and restricted GrRC estimators in Table 3. The sim-

ulation results show that the weak-identification robust inference CI has coverage close to

95%, regardless of the magnitude of µ(0,1)− µ(1,0). In contrast, both the CRC and restricted

GrRC tend to over-cover. The simulation results suggest that this over-coverage issue is

likely related to the over-estimation of the sampling variance shown in Table 3.

3.6 Weak-identification Robust Inference: Revisiting Suri (2011)

Building on our formal analysis, we revisit our reanalysis of Suri (2011) using the GrRC

approach. The unrestricted GrRC estimates help explain the inconsistent CRC results in

Table 2. For T = 2, the returns to hybrid adoption are similar in magnitude but have opposite

signs for joiners (∆(0,1)) and leavers (∆(1,0)). This helps explain why the estimated hybrid

coefficient for the FE regression is insignificant, as it pools these two switcher subpopulations

together. However, the average yield without adoption for these subpopulations (µ(0,1) and

µ(1,0)) is statistically indistinguishable, especially with control variables as in column (2).

As noted in (7) and Proposition 1 (iii), φ will suffer from weak-identification issues

when this yield difference without adoption is small. This sensitivity to the yield difference

11The restriction on the coefficient on hit1{hi = (1, 1)} in (10) follows from noting that κ(1,1) −∆(0,1) =
µ(1,1) + ∆(1,1) −∆(0,1) and using Proposition 1 (iii).
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might explain why minor discrepancies in our working data result in disproportionately big

differences in our estimates of φ, on which so much of the narrative in Suri (2011) rests.

Next, we construct the 95% confidence interval for φ for the different specifications we

consider using our weak-identification robust inference procedure reported in Table 2. For

the majority of the specifications, the upper and lower bounds of the confidence intervals

are negative and include values for φ similar in magnitude to the point estimates reported

in Suri (2011). Our weak-identification robust inference approach thus allows us to reconcile

the inference results on the key LCA parameter in Suri (2011).

4 Concluding Remarks

Despite being widely-cited in development economics, most references to Suri (2011) do not

discuss her methodological contribution or the selection patterns implied by a negative φ.

Instead of prompting a nuanced discussion of different forms of heterogeneity, the article

is often cited as generic evidence of the simple presence of heterogeneity in the returns to

technology adoption. This superficial reading misses an opportunity to inform policies aimed

at stimulating technology adoption since optimal program design often hinges more on the

specific form of heterogeneous returns than on the mere existence of heterogeneity. We hope

that, by highlighting how to detect potential weak-identification concerns and conduct weak-

identification robust inference on the key structural parameter of the model, our approach

will be useful for applied researchers who wish to study models like the one in Suri (2011).

Our GrRC approach provides additional appealing features, especially when T > 2.

First, the Suri (2011) approach is cumbersome for multiple periods and may suffer from

multicollinearities in the reduced form.12 Our GrRC approach circumvents this issue by

only requiring dummy variables for observed adoption trajectories. Second, the unrestricted

GrRC model, unlike the CRC model’s reduced form, has an economic interpretation and pro-

vides insights into potential identification concerns for φ. Finally, relating the Suri (2011)

model with the panel identification literature provides alternative identification strategies,

such as exchangeability and other nonparametric correlated random effects restrictions (Al-

tonji and Matzkin, 2005; Bester and Hansen, 2009; Ghanem, 2017).

12To obtain the reduced form of Suri (2011)’s CRC model, θi is projected onto a fully saturated model
of hit for all t = 1, . . . , T . Any unobserved adoption history will lead to at least two of the independent
variables in this projection becoming collinear.
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Table 1: OLS and FE models (Table IIIA in Suri 2011)

Panel A: Suri 2011 OLS FE

Hybrid 1.074 0.695 0.541 0.017 0.090
(0.040) (0.039) (0.041) (0.070) (0.065)

Panel B: Re-analysis

Hybrid 1.072 0.692 0.582 0.0139 0.0330
(0.0457) (0.0443) (0.0424) (0.0696) (0.0656)

Acres -0.00995 -0.0675
(0.00964) (0.0218)

Seed rate (kg/acre) x 10 0.202 0.180
(0.0271) (0.0317)

Land prep (Ksh/acre) x 1000 0.0162 0.0193
(0.00305) (0.00511)

Fertilizer (Ksh/acre) x 1000 0.0243 0.0111
(0.00283) (0.00385)

Hired labor (Ksh/acre) x 1000 0.0311 0.0238
(0.00856) (0.00921)

Family labor (hours/acre) x 1000 0.196 0.238
(0.0796) (0.107)

2004 0.538 0.518 0.374 0.483 0.517
(0.0348) (0.0333) (0.0407) (0.0318) (0.0535)

N 1197 1197 1197 1197 1197
Province FE No Yes Yes
Controls No No Yes No Yes
Adj. R2 0.27 0.40 0.48 0.49 0.56

Notes: Dependent variable is ln(yield). Regressions with covariates follow Suri (2011), i.e., in addition
to the covariates reported, we include controls for household size, the number of boys (males < age
16), the number of girls (females < age 16), the number of men (aged 17 to 39), the number of women
(aged 17 to 39), the number of older men (males > age 40), and main season rainfall. All specifications
assume that covariates are exogenous.
OLS specification: yit = δ + βhit +X

′

itγ + εit
FE specification: yit = δ + βhit +X

′

itγ + αp + εipt , for province p
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Table 2: CRC and GrRC models (Table VIII A in Suri 2011)

Panel A: CRC
Suri 2011 Full sample No HIV districts

λ1 0.648 0.565 0.456 0.471 0.305 0.139
(0.093) (0.087) (0.090) (0.099) (0.089) (0.092)

λ2 1.007 0.665 0.473 1.139 0.710 0.466
(0.112) (0.104) (0.116) (0.122) (0.112) (0.123)

λ3 1.636 -1.69 -0.485 -4.800 -0.936 -0.497
(4.854) (4.316) (0.199) (9.173) (0.308) (0.257)

β -0.543 1.0323 3.534 2.287 0.623 0.790
(1.874) (1.480) (24.05) (4.222) (0.100) (0.169)

φ -0.794 -1.317 -17.82 -1.010 -1.518 -2.196
(0.411) (1.262) (137.4) (0.228) (0.310) (1.142)

Panel B: CRC
Re-analysis
λ1 0.716 0.538 0.651 0.630 0.389 0.324

(0.0761) (0.0702) (0.193) (0.0782) (0.0704) (0.185)
λ2 0.923 0.522 1.110 0.937 0.440 1.068

(0.108) (0.0961) (0.238) (0.116) (0.103) (0.246)
λ3 -0.334 46.67 -0.00903 -0.297 -0.156 0.193

(0.405) (.) (0.369) (0.305) (0.928) (0.301)
β 0.0195 -24.43 -0.492 -0.0151 0.0872 -0.359

(0.0842) (0.0720) (0.307) (0.133) (0.339) (0.331)
φ 0.104 -0.994 -0.0808 -0.0443 -0.207 -0.228

(0.935) (0.00121) (0.381) (0.605) (2.876) (0.238)

Panel C: GrRC
Re-analysis
µ00 5.246 4.431 4.502 5.354 4.536 4.517

(0.0460) (0.0765) (0.129) (0.0546) (0.0806) (0.134)
µ01 5.942 4.927 4.999 6.068 4.950 4.907

(0.0917) (0.111) (0.155) (0.0913) (0.109) (0.162)
µ10 6.215 5.274 5.226 6.279 5.240 5.062

(0.0747) (0.101) (0.152) (0.0784) (0.102) (0.156)
κ(1,1) 6.637 5.524 5.533 6.641 5.420 5.523

(0.0242) (0.0835) (0.0966) (0.0241) (0.0872) (0.0977)
∆01 0.508 0.370 0.315 0.500 0.345 0.527

(0.0980) (0.0910) (0.183) (0.104) (0.0951) (0.193)
∆10 -0.476 -0.318 -0.304 -0.520 -0.326 -0.132

(0.0951) (0.0920) (0.182) (0.0998) (0.0957) (0.192)
WIR 95% CI: φ (-20.42, -2.13) (-4.23, -1.32) (-57.41, -1.55) (-∞ ∞) (-7.03, -1.47) (-∞ ∞)
Controls No Yes Yes No Yes Yes
Interactions No No Yes No No Yes

Notes: The dependent variable is ln(yield). Regressions with covariates follow Suri (2011), i.e., include controls for
household size, the number of boys (males < age 16), the number of girls (females < age 16), the number of men (aged
17 to 39), the number of women (aged 17 to 39), and the number of older men (males > age 40), the number of maize
acres, the seed rate (kg per acre), land preparation expenditures (KShs per acre), fertilizer expenditure (KShs per
acre), hired labor (KShs per acre), family labor (hours per acre), and main season rainfall. All specifications assume
that covariates are exogenous. Standard errors are clustered at the household level and reported in parentheses. The
CRC results in Panels A and B use OMD optimal-weighted minimum distance as in Suri (2011). The unrestricted
GrRC results in Panel C show estimates of the average yield without hybrid for the never-adopters and the switcher
trajectories (µ00, µ01, and µ10), the average yields for the always-adopters (κ(1,1)), and the returns to adoption for
the switcher trajectories (∆01 and ∆10). In Panel C, we report weak-identification robust 95% confidence intervals
for the LCA parameter, φ. We construct these using a grid search over [−5 ∗ 104, 5 ∗ 104] with 0.01 increments.
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Table 3: CRC and Restricted GrRC Point Estimation and Weak-identification Robust Inference on φ (φ = −0.5)

µ(0,1) − µ(1,0) CRC Restricted GRC WIR CI

Mean Median SD MAE RMSE SE/SD Cov. Mean Median SD MAE RMSE SE/SD Cov. Cov.

n = 1, 000

0.1 2.23 -0.15 6.20 2.95 6.78 10.10 0.939 -0.35 -0.48 14.60 2.96 14.60 19.00 0.999 0.950

0.25 0.79 -0.36 4.08 1.53 4.28 6.28 0.945 -0.16 -0.41 8.58 1.46 8.59 8.57 0.998 0.940

0.5 -0.31 -0.48 1.14 0.40 1.16 1.76 0.969 -0.33 -0.48 1.94 0.36 1.95 1.55 0.991 0.945

1 -0.48 -0.50 0.20 0.15 0.20 1.19 0.985 -0.49 -0.50 0.17 0.13 0.17 0.98 0.963 0.947

n = 2, 000

0.1 1.94 -0.15 5.39 2.65 5.92 8.20 0.979 -0.87 -0.44 24.90 3.21 24.90 20.20 0.999 0.940

0.25 0.17 -0.45 2.74 0.90 2.82 3.95 0.981 -0.42 -0.47 6.64 0.87 6.64 8.56 0.997 0.950

0.5 -0.45 -0.49 0.33 0.22 0.34 1.17 0.986 -0.46 -0.49 0.28 0.20 0.28 0.97 0.977 0.944

1 -0.49 -0.50 0.13 0.10 0.13 1.23 0.984 -0.49 -0.50 0.12 0.09 0.12 1.00 0.963 0.954

n = 5, 000

0.1 1.07 -0.30 3.77 1.79 4.08 5.84 0.998 -0.50 -0.42 11.70 1.66 11.70 9.52 0.999 0.944

0.25 -0.37 -0.48 0.73 0.33 0.74 1.49 0.995 -0.42 -0.49 1.27 0.28 1.27 1.63 0.990 0.955

0.5 -0.49 -0.50 0.17 0.13 0.17 1.19 0.986 -0.49 -0.50 0.15 0.12 0.15 1.01 0.963 0.950

1 -0.50 -0.50 0.08 0.06 0.08 1.24 0.985 -0.50 -0.50 0.07 0.06 0.07 1.00 0.951 0.948

Notes: The above table presents simulation statistics for the estimators of φ as well as the coverage of the weak-identification robust confidence interval (WIR CI).
SD, MAE, RMSE and SE/SD abbreviate the simulation standard deviation, median absolute error, root-mean squared error, and the ratio of the average standard
error to the simulation standard deviation, respectively. Cov. abbreviates coverage probability for a 95% confidence interval. The summary statistics are computed
using 5,000 simulation replications. The outcome in our design is given by yit = µi + (β + φθi)hit + uit for i = 1, . . . , n, t = 1, 2, where θi = µi − E[µi],

µi|(hi1, hi2)
i.i.d.∼ N(µ(hi1,hi2), σ

2
µ), uit|(hi1, hi2)

i.i.d.∼ N(0, σ2
u). We set β = 0.25, µ(0,0) = 1, µ(0,1) = 0, µ(1,0) = −η, µ(1,1) = 3, σ2

µ = 0.25, σ2
u = 1, π(0,1) + π(1,0) = 0.2,

π(0,1) = π(1,0), π(0,0) = π(1,1). For the CRC and Restricted GrRC, the simulation results are based on the replications where the estimator in question converges.
Since WIR CI is based on closed-form estimators, we report its simulation coverage probability across all simulations.
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(a) Full sample; no controls (b) Full sample; base controls (c) Full sample; interaction controls

(d) No HIV districts; no controls (e) No HIV districts; base controls (f) No HIV districts; interaction controls

Figure 1: Sensitivity of CRC Estimates of φ

Notes: The above box plot shows the distribution of the φ parameter estimated from the random coefficient model as developed in Suri (2011) when ten
households are removed from the sample at random across 10,000 simulation replications. We use the randcoef Stata command for estimation (Barriga-
Cabanillas et al., 2018). The dependent variable is ln(yield). Regressions with covariates follow Suri (2011), i.e., include controls for household size, the number
of boys (males < age 16), the number of girls (females < age 16), the number of men (aged 17 to 39), the number of women (aged 17 to 39), and the number
of older men (males > age 40), the number of maize acres, the seed rate (kg per acre), land preparation expenditures (KShs per acre), fertilizer expenditure
(KShs per acre), hired labor (KShs per acre), family labor (hours per acre), and main season rainfall. All specifications assume that covariates are exogenous.
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Online Appendix

A Data appendix

Our data processing follows the original author’s instructions, applying them to the pub-

licly available data from Tegemeo Institute. The summary statistics in Table A.1 compare

key variables across our dataset and Suri (2011), as well as across years. Overall, we find

similar means and distributions, with some minor differences. Our balanced panel has 1,197

households compared to 1,202 in Suri (2011), due to missing values for control variables.13

The biggest differences appear in the 2004 data for fertilizer application rates (Fertilizer)

and labor variables (Hired labor and Family labor). This suggests that Tegemeo Insti-

tute may have further cleaned the 2004 data after sharing it with the original author, while

the 1997 data set was already finalized at the time of sharing.

However, the 2004 fertilizer expenditures variable deserves some additional discussion

due to the larger discrepancies. In the data, district-level fertilizer prices contain missing

values. The data documentation suggests replacing missing values with the median price for

that fertilizer type. For districts with insufficient observations, we use the sample median

for that fertilizer type.

In the 2004 data, a few other complications arise. The documentation mentions several

data files that have different names in the open access data.14 Fertilizer prices also appear

in the household-level dataset hh04, where they are elicited as in 1997. Merging fertilizer

prices on district, fertilizer type, and fertilizer unit, as suggested in the data documenta-

tion, is challenging due to differences in coding between fert04 (field-level) and tfert04

(household-level). Some discrepancies are minor, while others involve significant numbers

of observations, such as 80 fields reporting fertilizer use in gorogoros (roughly 2 kg) but

reporting prices in another unit.15 We address this by computing median prices at the

district-fertilizer type-fertilizer unit level, converting these to per-kilo prices, and merging

them onto field-level data by household id.16 This discrepancy may explain some differences

between our dataset and Suri (2011).

13We lose two households due to missing labor variables and three to missing household head education.
14The dataset pricefert does not exist in the open access data. Instead, the dataset tfert04 contains

household- and fertilizer-type-level fertilizer price data. We assume this is the relevant dataset and compute
district- and fertilizer-type-level prices based on the variable inputpr.

15Another 151 households report fertilizer prices in 5, 10, or 25 kg bags, a unit that is absent in fert04.
16For households with multiple purchases of a given input type, we use the mean of the per-kilo prices.
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Table A.1: Comparison of key variables between our dataset and Suri (2011)

Panel A: Suri 2011 1997 Sample 2004 Sample
Mean (s.d.) Mean (s.d.)

Yield (log maize harvest per acre) 5.907 (1.153) 6.350 (0.977)
Acres planted 1.903 (3.217) 1.957 (2.685)
Total seed planted (kg per acre) 9.575 (7.801) 9.072 (6.863)
Hybrid (dummy) 0.658 (0.475) 0.604 (0.489)
Total fertilizer expenditure (KShs per acre) 1361.7 (2246.3) 1354.6 (1831.2)
Land preparation costs (KShs per acre) 960.88 (1237.1) 541.43 (1022.8)
Family labor (hours per acre) 293.25 (347.49) 354.27 (352.68)
Hired labor (KShs per acre) 1766.0 (3346.4) 1427.4 (2130.3)
Main season rainfall (mm) 620.83 (256.43) 728.11 (293.29)
Household size 7.109 (2.671) 8.409 (3.521)

Panel B: TGMBLM 2024 1997 Sample 2004 Sample

1997 2004
mean sd mean sd

Yield (log maize harvest per acre) 5.907 (1.155) 6.389 (0.979)
Acres planted 1.908 (3.223) 1.959 (2.689)
Total seed planted (kg per acre) 10.11 (8.361) 10.92 (8.092)
Hybrid (dummy) 0.657 (0.475) 0.605 (0.489)
Total fertilizer expenditure (KShs per acre) 1426.3 (2394.7) 3182.3 (6610.2)
Land preparation costs (KShs per acre) 2169.3 (4905.1) 1182.2 (1649.9)
Family labor (hours per acre) 292.4 (347.7) 560.9 (767.6)
Hired labor (KShs per acre) 1661.3 (3219.9) 1992.4 (2962.2)
Main season rainfall (mm) 620.9 (256.5) 728.5 (293.4)
Household size 7.107 (2.669) 8.349 (3.480)

Notes: This table corresponds to Table IIA in Suri (2011), reporting the subset of variables
used in estimation. KShs denotes Kenyan shillings. All monetary variables are in real terms.
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