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Abstract

This paper illustrates and addresses weak identification concerns in the correlated
random coefficient (CRC) model that Suri (2011) uses to study agricultural technology
adoption. Using the publicly available version of the dataset used in Suri (2011), which
we clean following the author’s instructions, we are unable to replicate the paper’s main
CRC model results. To understand why, we recast the CRC model as a more general
random-coefficient model in which the returns to hybrid adoption are restricted to be
linear in comparative advantage. This reveals that the key structural parameter in the
CRC model (φ) is prone to a weak identification problem. We then propose a procedure
to conduct weak-identification robust inference on φ using test inversion. Only with
this robust procedure accounting for weak identification are we able to replicate the
original Suri (2011) results.
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1 Introduction

In an influential paper, Suri (2011) addresses a long-standing development puzzle: why

do many sub-Saharan African farmers continue to use traditional farming techniques when

modern agricultural technologies portend higher returns? A large literature has proposed

explanations that center on market frictions preventing farmers from adopting profitable

technologies, such as credit constraints, uninsured risk, and incomplete information.1 Suri

(2011) instead provides an explanation that focuses on the role of heterogeneity in the returns

to adoption, which she models as stemming from time-invariant unobservables.

Central to the Suri (2011) approach is a specific restriction on the form of heterogeneous

returns. The Suri (2011) model posits that farmers make technology adoption decisions based

on their unobservable comparative advantage. It further imposes a key assumption, which

we call the Linearity in Comparative Advantage (LCA) restriction: the returns to hybrid

adoption must be linear in comparative advantage. The key structural parameter in this

correlated random coefficient (CRC) model is the slope parameter in this linear relationship

(φ), which we will refer to as the LCA parameter.

Using this assumption, Suri (2011) estimates a CRC model on a panel dataset of Kenyan

farm households that grow either hybrid or non-hybrid maize. She uses a linear projection

of an individual’s returns to adoption of the hybrid seed technology onto their observed

adoption history, building on the correlated random effects (CRE) approach in Chamberlain

(1984). This allows her to recover the LCA parameter (φ), the sign of which influences how

we interpret the results. She finds negative and statistically significant estimates of the LCA

parameter across her specifications, indicating that farmers who have the lowest non-hybrid

productivity stand to reap the highest productivity gains from switching to hybrids. Using

the LCA restriction, Suri (2011) then extrapolates the estimated returns to non-adopters in

the sample.

In our reanalysis, we are unable to replicate the negative and statistically significant

LCA parameter estimates in Suri (2011) using her CRC estimation approach. An array

of prescriptions and interventions aim to encourage precisely these non-adopters to adopt

productivity-enhancing technologies. Reliable parameter estimates from a model like Suri

(2011) can potentially adjudicate among these competing options. Correct inference about

these parameters therefore has direct practical and policy relevance.

We therefore investigate why our results differ from the original paper and uncover a

1For surveys of this vast literature, see Feder et al. (1985); Foster and Rosenzweig (2010); Magruder
(2018); Jack (2013).
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potential for weak identification of the LCA parameter in the CRC model. We show that

the CRC model in Suri (2011) is a restricted version of a group random coefficient (GrRC)

model, specifically imposing the LCA restriction. The unrestricted version of the GrRC

model highlights the nature of the weak-identification problem. As a result, researchers can

use the unrestricted GrRC to detect potential weak identification of the LCA parameter in

practice.

Next, we propose a weak-identification robust procedure for inference on the LCA param-

eter. Our procedure is based on test inversion of the LCA restriction on the parameters of

the (unrestricted) GrRC model. We illustrate the weak identification problem and the finite-

sample performance of our weak-identification robust inference procedure using a small-scale

simulation study.

Finally, we revisit the reanalysis of Suri (2011) using our GrRC approach. Our unre-

stricted GrRC estimates clearly raise concerns regarding weak identification of the LCA pa-

rameter. The weak-identification robust confidence interval we construct for this parameter

yields negative intervals across multiple specifications; further, the intervals include values

for the LCA parameter (φ) that are similar in magnitude to the point estimates reported in

Suri (2011). In sum, once when we account for the weak-identification issue, we are able to

replicate the main result in Suri (2011).

In the next section, we briefly describe our reanalysis attempt. Section 3 presents the

GrRC model for the two-period case and, after imposing the LCA restriction of the CRC

model, introduces the weak-identification robust inference procedure for the LCA parameter.

Simulations illustrate that the proposed weak-identification robust inference provides good

coverage probabilities in finite samples. Section 4 discusses the relevance of our findings for

the broader questions surrounding technology adoption in low-income agriculture.

2 Reanalysis of Suri (2011)

2.1 Data

We use the same panel dataset on rural Kenyan households as Suri (2011), which was col-

lected and provided by the Tegemeo Institute of Agricultural Policy and Development In-

stitute.2 Appendix C documents the steps that we take to ensure our data are as close as

possible to the dataset used in the original paper. The appendix also compares summary

2Note that Tegemeo Institute makes the data available to researchers subject to a brief application form.
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statistics across the two datasets. Our data and the original dataset are very similar, with

a few minor exceptions: despite obtaining the data directly from the same source as Suri

(2011) and following the original author’s data cleaning documentation, our reconstructed

sample consists of 1,197 households instead of the 1,202 in Suri (2011). Furthermore, minor

discrepancies in the summary statistics suggest that there exist other differences, either in the

composition of these roughly 1,200 households or in the way that variables were constructed,

imputed, or cleaned.

Throughout, we construct variables following Suri (2011). We define maize yield as the

ratio of (self-reported) maize harvest to the plot size.3 We similarly construct technology

adoption trajectories and fertilizer use based on whether households report using a hybrid

maize seed or fertilizer, respectively, in the relevant season. In addition, we report specifica-

tions that control for the same set of demographic and agricultural production variables as

Suri (2011).

2.2 Reanalysis Results

Table 1 reports the descriptive OLS and fixed effects (FE) specifications that Suri (2011)

uses to introduce her analysis. These regressions provide an estimate of the average yield

advantages of hybrid maize compared to non-hybrid maize varieties under the assumption

that returns are homogeneous. Panel A shows the point estimates from the original paper,

while Panel B shows our reanalysis.4 Our results are statistically indistinguishable from Suri

(2011).

The crux of our reanalysis is the estimation of the CRC model and of the LCA parameter

in particular. We offer a concise presentation of this model here before discussing our results

(for a more detailed exposition, see Suri (2011)). This CRC model is given by:

yit = τi + θi + (β + φθi)hit + x′itγ + hitx
′
itδ + εit, (1)

where yit is log of maize yield for household i at time t; τi is farmer i’s absolute advantage,

assumed to be (mean) independent of technology adoption (i.e., E[τi|hi] = E[τi]); hi =

(hi1, . . . , hiT ) denotes individual i’s adoption history with each hit indicating whether farmer

i adopted hybrid seeds at time t; εit ∼ N (0, σ2
u) is an idiosyncratic error term, and θi can

3Note that this is not a measure of economic returns, as the variable is not net of input costs; however,
we maintain the assumption in Suri (2011) that input costs, other than hybrid seeds, are constant across
hybrid and non-hybrid sectors.

4The results in Panel A correspond to Table IIIA in Suri (2011).
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be correlated with the adoption history. To estimate the different means across different

adoption history in the CRC model following Chamberlain (1984), a linear projection of θi

onto a fully saturated model of adoption histories is used:

θi = λ0 + λ1hi1 + λ2hi2 + λ3hi1hi2 + ηi. (2)

We call the restriction on response heterogeneity in this model—i.e., the assumption that

the returns to hybrid adoption are linear in comparative advantage—the LCA restriction and

therefore refer to φ as the LCA parameter.

We show the results for this CRC model in Table 2, which we estimate using the Stata

package from Barriga-Cabanillas et al. (2018). Even though we use data that are nearly

identical to Suri’s (2011), we are only able statistically to replicate the estimates for λ1

and λ2. Our estimates of φ are (mostly) insignificant, suggesting no detectable patterns

of comparative advantage to hybrid maize production. Our inability to reproduce this key

finding in Suri (2011) is unexpected, especially since it can only be attributed to seemingly

trivial differences in the working data we construct from the Tegemeo panel dataset. In order

to explore why minor data differences could have such disproportionate estimation impacts,

we introduce a more general model that includes the CRC model in Suri (2011) as a special

case.

3 A Group Random Coefficient (GrRC) Alternative

In this section, we start with an unrestricted random coefficient model that nests the LCA

restricted model as a special case. We then show how the LCA parameter, φ, can be identified

from a restriction on a group random coefficient (GrRC) model. This model allows us to

show the potential source of weak identification of this parameter and to propose a weak-

identification robust inference procedure for it.

3.1 Unrestricted Random Coefficient Model

Suppose that (log) yield is a function of hybrid adoption, hit, farmer ability, ai, and idiosyn-

cratic shocks, εit, which is given by the following, for i = 1, . . . , n and t = 1, . . . , T .

yit = f(hit, ai) + εit. (3)
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In this paper, as in Suri (2011), we maintain the strict exogeneity assumption, i.e. E[εit|hi, ai] =

0, where hi = (hi1, . . . , hiT ) denotes farmer i’s adoption history and each hit is a binary in-

dicator of adoption. We impose no restriction on the distribution of farmer ability (ai)

conditional on adoption history (hi), thereby treating ai as a “fixed effect.”5 For simplicity,

we consider a model without covariates, but our results extend to the inclusion of additively

separable covariates as in (1).

Since hit is a binary variable, we can express the above equation equivalently as a random

coefficient model by letting µi ≡ f(0, ai) and ∆i ≡ f(1, ai)− f(0, ai),

yit = µi + ∆ihit + εit. (4)

In our empirical context, µi denotes farmer i’s expected (log) yield without adoption and ∆i

the returns to hybrid maize adoption. This model nests the CRC model of Suri (2011) as a

special case. To see this, let µi = τi + θi and ∆i = β + φθi,

yit = τi + θi + (β + φθi)hit + εit, (5)

which is the CRC model without covariates. Selection into technology adoption is determined

by θi, farmer i’s comparative advantage, which admits the normalization E[θi] = 0.

3.2 Group Random Coefficient (GrRC) Model

Applying the GrRC approach to this context relies on the insight that with a binary variable

and fixed T there is a finite number of adoption histories. We denote the realization of

an adoption history hi by h = (h1, . . . , hT ) ∈ H = {0, 1}T , the set of switcher trajectories

HS = {h ∈ HS : 0 <
∑T

t=1 hit < T}, and the set of stayer trajectories Hc
S = H\HS. Since

Suri (2011) considers the case of T = 2 and uses a two-period panel data set, we illustrate

the GrRC alternative for T = 2, but the results extend to any T <∞.

With T = 2, hi can take four possible values; formally, its support is given by H =

{0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Since the adoption histories may entail different distri-

butions of ability, it is natural to define subpopulations in terms of adoption histories. Suri

(2011) refers to the four subpopulations in the two-period case as never-adopters, joiners,

5As per arguments in Chernozhukov et al. (2013), f(hit, ai) may be viewed as the conditional mean

function of a fully nonseparable model, φ(hit, ai, uit), where we assume time homogeneity, i.e. uit|hi, ai
d
=

ui1|hi, ai.

5



leavers, and always-adopters. As a result, HS = {(0, 1), (1, 0)}, the set of switcher subpopu-

lations, consists of joiners and leavers, respectively. Its complement set, Hc
S = {(0, 0), (1, 1)},

is composed of the two stayer subpopulations, never-adopters and always-adopters, respec-

tively.

We are interested in how the average returns to adoption varies across the different

subpopulations, and therefore integrate the unrestricted random coefficient model (4) with

respect to ai|hi, which yields the following conditional mean model under strict exogeneity,

E[εit|hi, ai] = 0,

E[yit|hi = h] = µh + ∆hht, (6)

where µh ≡ E[µi|hi = h] = E[f(0, ai)|hi = h], ∆h ≡ E[∆i|hi = h] = E[f(1, ai)−f(0, ai)|hi =

h], and ht is the tth element of h for t = 1, . . . , T .

By the time homogeneity of µh and ∆h, we can identify the average return to adoption

for subpopulations that we observe with and without hybrid adoption in our data. Hence,

∆h is only nonparametrically identified for the switcher subpopulations, h ∈ HS. For stayer

subpopulations, we can either identify their average yield with or without adoption.6 Specifi-

cally, for the never-adopters, we can identify the average yield without adoption, µ(0,0), while

we can only identify the average yield with adoption for the always-adopters. We denote the

latter average by κ(1,1) = µ(1,1) + ∆(1,1). Without further restrictions, we cannot separately

identify µ(1,1) and ∆(1,1). Hence, the returns to adoption are not nonparametrically identified

for the stayer subpopulations.

All of the aforementioned identifiable objects can be estimated consistently using the

following GrRC model,

yit =
∑

h∈H\(1,1)

µh1{hi = h}+
∑
h∈HS

∆hhit1{hi = h}+ κ(1,1)hit1{h = (1, 1)}+ εit. (7)

An advantage of the GrRC model relative to the reduced form of the CRC model in Suri

(2011) is that all of the GrRC coefficients have economic meaning: µh is the average yield

without hybrid adoption for subpopulation h, ∆h is the average return to adoption for

switcher subpopulation h, and κ(1,1) is the average yield with hybrid for the always-adopters.

6Since we are referring to the average yield of a subpopulation, it is by definition the expected yield of this
subpopulation. We prefer the more intuitive term “average yield” to “expected yield” and use it hereinafter
to refer to the latter.
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3.3 Identifying the LCA Parameter

Next, we impose the LCA restriction on the GrRC model and illustrate how the unrestricted

model can indicate potential identification concerns for φ, the LCA parameter. To this end,

we first establish the relationship between parameters in the unrestricted GrRC model and

those in the Suri (2011) model in the following proposition.

Proposition 1. Let yit = µi + ∆ihit + εit. Assume µi = τi + θi, ∆i = β + φθi, E[θi] = 0,

E[τi|hi] = E[τi], E[εit|hi, τi, θi] = 0, the following equalities hold for h, h′ ∈ H = {0, 1}T ,

(i) ∆h = β + φθh,

(ii) µh − µh′ = θh − θh′,

(iii) ∆h −∆h′ = φ
(
µh − µh′

)
, for h 6= h′.

where θh = E[θi|hi = h].

The conditions required for the above proposition are imposed in Suri (2011). We provide

the proof of Proposition 1 in Appendix A. From (iii) in Proposition 1, we can re-write φ as

the ratio of difference in returns to adoption for different subpopulations to the difference

in their comparative advantage assuming µh 6= µh′ . Since we can identify both µh and ∆h

for switcher subpopulations, φ is identified as the following in the two-period case as long as

µ(1,0) 6= µ(0,1),

φ =
∆(1,0) −∆(0,1)

µ(1,0) − µ(0,1)

. (8)

This ratio points to the source of potential weak-identification for φ. As we illustrate numer-

ically in Section 3.5, this issue emerges when the difference in average yield without adoption

for joiners and leavers is relatively small.7 Since the unrestricted GrRC model enables us

to estimate both parameters without imposing the LCA restriction, the unrestricted GrRC

model plays a similar role to the first stage of an instrumental variables (IV) regression in

terms of detecting potential identification concerns, which we illustrate in Section 3.6. Un-

like the first-stage of an IV, however, the unrestricted GrRC has an economic interpretation

7If φ is identified, we can also identify µ(1,1), which allows us to identify β and θh for all h ∈ H.
Let πh = P (hi = h) for h ∈ H. Note that E[µi] =

∑
h∈H πhµh. Since E[θi] = 0, E[µi] = E[τi] and

θh = µh−
∑
h∈H µh. Since ∆h = β+φθh, we can therefore also identify β = ∆(0,1)−φθ(0,1) = ∆(1,0)−φθ(1,0).
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and indicates the degree of response heterogeneity to technology adoption, albeit only for

the switcher subpopulations.

3.4 Weak-identification Robust Inference on φ

In practice, φ may be weakly identified—as is the case in our empirical application (see

Section 3.6). Therefore, we use the restrictions on the LCA parameter obtained from Propo-

sition 1 to conduct weak-identification robust inference on this key structural parameter. We

specifically propose a weak-identification robust confidence interval for φ based on inverting

Wn(φ0), the Wald statistic, of

H0 : ∆h −∆h′ = φ0

(
µh − µh′

)
, for h ∈ HS, h′ ∈ HS, h 6= h′. (9)

Assuming sufficient regularity conditions such that Wn(φ0)
d→

H0:φ=φ0
χ2
|HS |−1, the (1 − α)%

confidence interval is defined as,

Cα = {φ0 ∈ Φ : Wn(φ0) < cα,|HS |−1} (10)

where Φ is a compact parameter space, cα,|HS |−1 is the (1−α)-quantile of the χ2
|HS |−1 distri-

bution. Since φ is a scalar parameter, computing the confidence interval is straightforward

using a fine grid search.8

3.5 Simulations

A small-scale simulation study illustrates the weak-identification concern and the weak-

identification-robust inference procedure that we propose. We consider a simple two-period

model that satisfies the LCA restriction described in Table 3. In addition to the CRC

estimator and the weak-identification robust inference procedure, we also consider the GrRC

8With more than two switcher subpopulations, as in the T > 2 case, it is possible for the confidence
interval to be empty if the over-identifying restrictions are violated. For a discussion of similar issues in the
context of weak-IV robust inference see Andrews et al. (2019).
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model with the LCA restriction (i.e., the restricted GrRC),9

yit =
∑

h∈H\(1,1)

µh + ∆(0,1)hit + φ(µ(1,0) − µ(0,1))hit1{hi = (1, 0)}

+
(
µ(1,1) + φ

(
µ(1,1) − µ(0,1)

))
hit1{hi = (1, 1)}+ εit. (11)

We include this estimator for completeness, but acknowledge that it will also suffer from the

same weak-identification problem as the CRC estimator.

Table 4 presents simulation summary statistics that illustrate how the difference between

µ(0,1) and µ(1,0), when small, can lead to a weak-identification problem for φ. Both the CRC

and restricted GrRC estimators suffer from severe bias that is exacerbated when the difference

between µ(0,1) and µ(1,0) is small. In addition, for both estimators, weak identification leads

the standard error to overestimate the simulation standard deviation.

Finally, we compare the coverage probabilities for the weak-identification robust 95%

CI with those obtained from the CRC and restricted GrRC estimators in Table 5. The

simulation results illustrate that the coverage of the weak-identification robust inference CI

is generally close to 95%, regardless of the magnitude of µ(0,1) − µ(1,0). In contrast, both

the CRC and restricted GrRC tend to overcover. The simulation results suggest that this

over-coverage issue is likely related to the over-estimation of the variance shown in Table 4.

3.6 Weak-identification Robust Inference: Revisiting Suri (2011)

Building on our formal analysis, we revisit our reanalysis of Suri (2011) using the GrRC

approach. The unrestricted GrRC estimates help explain the inconsistent CRC results in

Table 2. For T = 2 (Table 7), the returns to hybrid adoption are similar in magnitude

but have opposite signs for joiners (∆(0,1)) and leavers (∆(1,0)). This helps explain why the

estimated hybrid coefficient for the T = 2 FE regression is insignificant, as it pools together

these two switcher subpopulations. However, the average yield without adoption for these

two subpopulations (µ(0,1) and µ(1,0)) is statistically indistinguishable, especially when we add

control variables in column (2). As noted in (8) and Proposition 1 (iii), φ will suffer from a

weak-identification issue when this yield difference without adoption is small. Furthermore,

the fact that identification is so sensitive to this yield difference may explain why very small

discrepancies in our working data result in disproportionately big differences in our estimates

9The restriction on the coefficient on hit1{hi = (1, 1)} in (11) follows from noting that κ(1,1) −∆(0,1) =
µ(1,1) + ∆(1,1) −∆(0,1) and using Proposition 1 (iii).
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of φ, on which so much of the narrative in Suri (2011) rests.

Next, we construct the 95% confidence interval for φ for the different specifications we

consider using our weak-identification robust inference procedure reported in Table 7. With

the exception of one specification, which does not include control variables, the upper and

lower bounds of the resulting confidence intervals are negative and include values for φ that

are similar in magnitude to the point estimates reported in Suri (2011). As a result, our

weak-identification robust inference approach allows us to replicate the inference results on

this key LCA parameter in Suri (2011).

4 Concluding Remarks

Despite being well-known and widely-cited in development economics, Suri (2011) has had

surprisingly limited methodological impact: rather than leading to widespread use of the

CRC method and to nuanced discussion in subsequent empirical work of the specific form

of heterogeneity it implies, the article is largely cited as generic evidence of heterogeneity in

the returns to new technologies. Such a superficial reading of the article misses an important

opportunity to inform policies and interventions aimed at stimulating technology adoption

since optimal program design often hinges on the specific form of heterogeneous returns

rather than the mere existence of such heterogeneity. We aim to revive the methodological

contribution of Suri (2011) by proposing an approach that allows empirical researchers to

detect potential weak-identification concerns as well as conduct weak-identification robust

inference on the key structural parameter of the model.

In addition to allowing us to address the weak-identification issues, the GrRC approach

provides several appealing features, especially when T > 2. First, the Suri (2011) approach

to estimating the CRC model is cumbersome to adapt to the multiple-period case due to

multicollinearities that arise in the reduced form whenever some adoption histories are un-

observed in a given dataset.10 Since the regressors in our GrRC approach consist of dummy

variables for the adoption histories, this issue is circumvented by the inclusion of dummy

variables for the observed trajectories. Second, the unrestricted GrRC model, unlike the re-

duced form of the CRC model, has an economic interpretation and provides the practitioner

with insights on potential identification concerns pertaining to the parameter φ. Finally,

relating the Suri (2011) model with the panel identification literature provides alternative

10To obtain the reduced form of the CRC model in Suri (2011), θi is projected onto a fully saturated
model of hit for all t = 1, . . . , T . As soon as any adoption history is unobserved, then at least two of the
independent variables in this projection become collinear.
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identification strategies, such as exchangeability and other nonparametric correlated random

effects restrictions (Altonji and Matzkin, 2005; Bester and Hansen, 2009; Ghanem, 2017).

References

Altonji, J. and Matzkin, R. (2005). Cross-section and panel data estimators for nonsep-

arable models with endogenous regrssors. Econometrica, 73 (3), 1053–1102.

Andrews, I., Stock, J. H. and Sun, L. (2019). Weak instruments in instrumental vari-

ables regression: Theory and practice. Annual Review of Economics, 11 (1), 727–753.

Barriga-Cabanillas, O., Michler, J. D., Michuda, A. and Tjernström, E. (2018).

Fitting and Interpreting Correlated Random Coefficient (CRC) Models Using Stata. Stata

Journal, 18 (1), 159–173.

Bester, C. A. and Hansen, C. (2009). Identification of marginal effects in a nonparametric

correlated random effects model. Journal of Business & Economic Statistics, 27 (2), 235–

250.

Chamberlain, G. (1984). Panel data. In Z. Griliches and M. Intriligator (eds.), Handbook

of Econometrics, Elsevier, pp. 1247–1318.

Chernozhukov, V., Fernandez-Val, I., Hahn, J. and Newey, W. (2013). Average

and quantile effects in nonseparable panel data models. Econometrica, 81 (2), pp.535–580.

Feder, G., Just, R. E. and Zilberman, D. (1985). Adoption of agricultural innovations

in developing countries: A survey. Economic Development and Cultural Change, 33 (2),

255–98.

Foster, A. and Rosenzweig, M. (2010). Microeconomics of technology adoption. Annu.

Rev. Econ., 2 (1), 395–424.

Ghanem, D. (2017). Testing identifying assumptions in nonseparable panel data models.

Journal of Econometrics, 197 (2), 202–217.

Jack, B. K. (2013). Market inefficiencies and the adoption of agricultural technologies in

developing countries. CEGA White Paper.

11



Magruder, J. R. (2018). An assessment of experimental evidence on agricultural technol-

ogy adoption in developing countries. Annual Review of Resource Economics, 10, 299–316.

Suri, T. (2011). Selection and comparative advantage in technology adoption. Economet-

rica, 79 (1), 159–209.

— (2018). Data documentation for Suri 2011.

12



Table 1: OLS and FE models (Table IIIA in Suri 2011)

Panel A: Suri 2011 OLS FE

Hybrid 1.074*** 0.695*** 0.541*** 0.017 0.090

(0.040) (0.039) (0.041) (0.070) (0.065)

Panel B: Re-analysis

Hybrid 1.072*** 0.692*** 0.530*** 0.0139 0.0319

(0.0457) (0.0443) (0.0425) (0.0696) (0.0661)

Acres -0.00906 -0.0638***

(0.00964) (0.0219)

Seed rate (kg/acre) x 10 0.203*** 0.177***

(0.0275) (0.0310)

Land prep (Ksh/acre) x 1000 0.0169*** 0.0191***

(0.00313) (0.00520)

Fertilizer (Ksh/acre) x 1000 0.0223*** 0.0113***

(0.00274) (0.00389)

Hired labor (Ksh/acre) x 1000 0.0314*** 0.0239***

(0.00844) (0.00925)

Family labor (hours/acre) x 1000 0.193** 0.243**

(0.0788) (0.107)

2004 0.538*** 0.518*** 0.408*** 0.483*** 0.447***

(0.0348) (0.0333) (0.0369) (0.0318) (0.0443)

Observations 1197 1197 1197 1197 1197

N × T 2394 2394 2394 2394 2394

District FE No Yes Yes

Controls No No Yes No Yes

Adj. R2 0.27 0.40 0.49 0.49 0.56

Notes: Dependent variable is ln(yield). Covariates follow Suri (2011). All regressions include acreage,
land preparation costs, fertilizer, hired labor, family labor, main season rainfall, household size and age-
sex composition of the household (includes indicator variables for the number of boys (aged<16 years),
the number of girls, the number of men (aged 17–39), the number of women, and the number of older men
(aged>40 years). OLS specification: yit = δ+βhit+X

′

itγ+εit FE specification: yit = δ+αi+βhit+X
′

itγ+εit
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Table 2: CRC results replication (Table VIIIA in Suri 2011)

Full sample No HIV districts

λ1 0.716*** 0.564*** 0.760*** 0.630*** 0.393*** 0.352*

(0.0761) (0.0701) (0.194) (0.0782) (0.0703) (0.187)

λ2 0.923*** 0.527*** 0.930*** 0.937*** 0.435*** 0.908***

(0.108) (0.0958) (0.240) (0.116) (0.102) (0.247)

λ3 -0.334 26.79 0.0318 -0.297 -0.178 0.218

(0.405) (.) (0.993) (0.305) (0.988) (0.379)

β 0.0195 -13.98*** -0.388 -0.0151 0.0937 -0.246

(0.0842) (0.0719) (0.442) (0.133) (0.318) (0.358)

φ 0.104 -0.990*** -0.0855 -0.0443 -0.150 -0.236

(0.935) (0.00209) (1.034) (0.605) (3.591) (0.319)

Observations 1197 1197 1197 1057 1057 1057

Controls No Yes Yes No Yes Yes

Interactions No No Yes No No Yes

Notes: We follow the specifications of Suri (2011). Structural coefficients reported are the
average return to hybrid (β), the comparative advantage coefficient (φ), and the coefficients
(λ1 and λ2). Following the original paper, we use OMD as the optimal weighting matrix for
the minimum-distance procedure. Results for the no-HIV districts omit two districts where
HIV was prevalent, following Suri (2011). All specifications with covariates assume that all
covariates are exogenous. Covariates follow Suri (2011). All regressions include acreage, land
preparation costs, fertilizer, hired labor, family labor, main season rainfall, household size
and age-sex composition of the household (includes indicator variables for the number of boys
(aged<16 years), the number of girls, the number of men (aged 17–39), the number of women,
and the number of older men (aged>40 years).
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Table 3: Simulation Design

Outcome Equation yit = µi + (β + φθi)hit + uit for i = 1, . . . , n, t = 1, 2.

Unobservables µi|(hi1, hi2)
i.i.d.∼ N(µ(hi1,hi2), σ

2
µ),

θi = µi − E[µi],

uit|(hi1, hi2)
i.i.d.∼ N(0, σ2

u).

Subpopulations π(0,1) + π(1,0) = 0.2,
π(0,1) = π(1,0), π(0,0) = π(1,1).

Notes: Before generating the unobservables and the outcome model, we randomly
assign each unit i the trajectory using a uniform random variable with the proportions
given above, where we define π(h1,h2) = P ((hi1, hi2) = (h1, h2)). We fix β = 0.25,
σ2
u = 1, σ2

µ = 0.25, µ(0,0) = 1, µ(0,1) = 0, µ10 = −η, and µ(1,1) = 3. By varying
η = µ(0,1) − µ(1,0), we vary the degree of weak identification in our design.
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Table 4: CRC and Restricted GMM Point Estimation of φ (φ = −0.5)

µ(0,1) − µ(1,0) CRC Restricted GRC

Mean Median SD MAE RMSE SE/SD Mean Median SD MAE RMSE SE/SD

n = 1, 000

0.1 2.23 -0.15 6.20 2.95 6.78 10.10 -0.35 -0.48 14.60 2.96 14.60 19.00

0.25 0.79 -0.36 4.08 1.53 4.28 6.28 -0.16 -0.41 8.58 1.46 8.59 8.57

0.5 -0.31 -0.48 1.14 0.40 1.16 1.76 -0.33 -0.48 1.94 0.36 1.95 1.55

1 -0.48 -0.50 0.20 0.15 0.20 1.19 -0.49 -0.50 0.17 0.13 0.17 0.98

n = 1, 500

0.1 2.27 -0.14 6.18 2.98 6.77 9.25 -0.83 -0.47 16.50 2.76 16.50 14.40

0.25 0.43 -0.40 3.30 1.15 3.43 4.66 -0.18 -0.42 8.68 1.11 8.68 11.20

0.5 -0.41 -0.49 0.60 0.27 0.61 1.17 -0.45 -0.49 0.36 0.23 0.36 0.99

1 -0.50 -0.50 0.15 0.12 0.15 1.21 -0.50 -0.51 0.14 0.11 0.14 0.98

n = 2, 000

0.1 1.94 -0.15 5.39 2.65 5.92 8.20 -0.87 -0.44 24.90 3.21 24.90 20.20

0.25 0.17 -0.45 2.74 0.90 2.82 3.95 -0.42 -0.47 6.64 0.87 6.64 8.56

0.5 -0.45 -0.49 0.33 0.22 0.34 1.17 -0.46 -0.49 0.28 0.20 0.28 0.97

1 -0.49 -0.50 0.13 0.10 0.13 1.23 -0.49 -0.50 0.12 0.09 0.12 1.00

n = 5, 000

0.1 1.07 -0.30 3.77 1.79 4.08 5.84 -0.50 -0.42 11.70 1.66 11.70 9.52

0.25 -0.37 -0.48 0.73 0.33 0.74 1.49 -0.42 -0.49 1.27 0.28 1.27 1.63

0.5 -0.49 -0.50 0.17 0.13 0.17 1.19 -0.49 -0.50 0.15 0.12 0.15 1.01

1 -0.50 -0.50 0.08 0.06 0.08 1.24 -0.50 -0.50 0.07 0.06 0.07 1.00

Notes: The above table presents simulation statistics for the estimators of φ using different values of µ(0,1) − µ(1,0) and sample sizes
of the design described in Table 3. The summary statistics are computed using 5,000 simulation replications. We set β = 0.25,
σ2
µ = 0.25 and σ2

u = 1, with the total share of switchers set as 20% of the sample. Only simulation results where the model converged
are displayed. SD, MAE, RMSE and SE/SD abbreviate the simulation standard deviation, median absolute error, root-mean squared
error, and the ratio of the average standard error to the simulation standard deviation, respectively.
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Table 5: Coverage Probability of 95% CI on φ (φ = −0.5)

µ(0,1) − µ(1,0) Weak-Id Robust CRC Restricted GRC

All simulations CRC Conv. R-GRC conv. CRC conv. R-GRC conv.

n = 1, 000

0.1 0.950 0.966 0.959 0.939 0.999

0.25 0.940 0.950 0.961 0.945 0.998

0.5 0.945 0.950 0.964 0.969 0.991

1 0.947 0.947 0.948 0.985 0.963

n = 1, 500

0.1 0.943 0.957 0.956 0.964 0.999

0.25 0.947 0.957 0.966 0.967 0.998

0.5 0.950 0.956 0.961 0.986 0.985

1 0.945 0.945 0.945 0.983 0.955

n = 2, 000

0.1 0.940 0.951 0.956 0.979 0.999

0.25 0.950 0.959 0.969 0.981 0.997

0.5 0.944 0.949 0.953 0.986 0.977

1 0.954 0.954 0.954 0.984 0.963

n = 5, 000

0.1 0.944 0.955 0.961 0.998 0.999

0.25 0.955 0.961 0.969 0.995 0.990

0.5 0.950 0.950 0.950 0.986 0.963

1 0.948 0.948 0.948 0.985 0.951

Notes: The above table presents the coverage probability of 95% confidence interval on φ for each procedure
using different values of µ(0,1) − µ(1,0) and sample sizes of the design described in Table 3. The coverage
probabilities are computed using 5,000 simulation replications. We set β = 0.25, σ2

µ = 0.25 and σ2
u = 1 with

the total share of switchers set as 20% of the sample. R-GRC conv. denotes the subset of simulations where
the restricted GRC model converged, whereas CRC conv. denotes the subset of simulations where the CRC
converged.
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Table 6: Coverage Probability of 95% CI on φ (φ = −0.5)

µ01 − µ10 100/
√
n 50/

√
n 10/

√
n

WIR CRC R-GRC WIR CRC R-GRC WIR CRC R-GRC

n = 500 0.946 0.985 0.948 0.949 0.983 0.953 0.954 0.949 0.998

n = 1, 000 0.947 0.984 0.949 0.945 0.986 0.949 0.951 0.968 0.998

n = 1, 500 0.949 0.983 0.950 0.945 0.984 0.952 0.946 0.980 0.998

n = 2, 000 0.946 0.985 0.947 0.946 0.984 0.952 0.946 0.911 0.998

Notes: The above table presents the coverage probability of 95% confidence interval for each pro-
ceduring using different values for µ(0,1) − µ(1,0) and sample sizes. The coverage probabilities are
computed based on 5,000 simulation replications of the design described in Table 3. We set β = 0.25,
σ2
µ = 0.25 and σ2

u = 1 with the total share of switchers set as 20% of the sample. Only simula-
tions results where the model converged are displayed. WIR, CRC, R-GRC abbreviate the weak-
identification robust inference procedure we propose, the correlated random coefficient estimator
proposed in Suri (2011) and the restricted GRC estimator, respectively.
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Table 7: Unrestricted GrRC Estimates and Weak-Identification Robust 95% CI on φ

Full Sample No HIV districts

µ(0,0) 5.246 4.457 4.501 5.354 4.531 4.527
(0.0366) (0.0715) (0.110) (0.0435) (0.0728) (0.116)

µ(0,1) 5.942 4.917 4.931 6.068 4.893 4.781
(0.0949) (0.114) (0.150) (0.100) (0.118) (0.159)

µ(1,0) 6.215 5.358 5.289 6.279 5.331 5.182
(0.0737) (0.0951) (0.129) (0.0753) (0.0948) (0.133)

∆(0,1) 0.508 0.475 0.527 0.500 0.525 0.803
(0.134) (0.124) (0.198) (0.142) (0.129) (0.203)

∆(1,0) -0.476 -0.427 -0.312 -0.520 -0.482 -0.213
(0.104) (0.0963) (0.168) (0.107) (0.0970) (0.169)

κ(1,1) 6.637 5.567 5.649 6.641 5.455 5.638
(0.0259) (0.0788) (0.0994) (0.0252) (0.0783) (0.0945)

WIR 95% CI: φ (-20.1, -2.2) (-1.04, -.3) (-2.16, -1.29) (-∞, ∞) (-1.25, -.5) (-2.36, -1.39)

Observations 2394 2394 2394 2114 2114 2114
Controls No Yes Yes No Yes Yes
Interactions No No Yes No No Yes

Notes: Dependent variable is ln yield. Covariates follow Suri (2011). All regressions include acreage, land prepara-
tion costs, fertilizer, hired labor, family labor, main season rainfall, household size and age-sex composition of the
household (includes indicator variables for the number of boys (aged<16 years), the number of girls, the number of
men (aged 17–39), the number of women, and the number of older men (aged>40 years). Weak-Id Robust (WIR)
95% CI is conducted using a grid search over [−5 ∗ 104, 5 ∗ 104] with 0.01 increments.
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Online Appendix

A Proof of Proposition 1

(i) follows by the definition of ∆i and ∆h as its conditional expectation as follows,

∆h = E[∆i|hi = h] = β + φE[θi|hi = h] = β + φθh (12)

(ii)

µh − µh′ = E[τi + θi|hi = h]− E[τi + θi|hi = h′] = θh − θh′ (13)

where the last equality follows from the mean-independence assumption, E[τi|hi] = E[τi].

(iii) is straightforward from (i) and (ii).

B Restricted GrRC Estimation for Multiple-Period Model

Here we provide the unrestricted GrRC model for any T ≥ 2

yit =
∑

h∈H:
∑T

t=1 ht<T

µh1{hi = h}+
∑
h∈HS

∆hhit1{hi = h}+ κhThit1

{
T∑
t=1

hit = T

}
+ εit. (14)

where hT denotes the always-adopter trajectory.

Using Proposition 1, we can obtain a restricted version of the above model,

yit =
∑

h∈H:
∑T

t=1 ht<T

µh + ∆h0
hit +

∑
h∈HS\h0

φ(µh − µh0)hit1{hi = h}

+
(
µhT + φ

(
µhT − µh0

))
hit1

{
T∑
t=1

hit = T

}
+ εit, (15)

for some baseline trajectory h0 ∈ HS.
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C Data appendix

In this appendix, we provide summary statistics of key variables to enable the reader to get

a sense of the differences between our dataset and that used in Suri (2011). We construct

our dataset following the step-by-step instructions that the original author provides (Suri,

2018), applying them to the publicly available data from Tegemeo Institute.11 Despite the

careful documentation, some differences remain, likely due to slight modifications in Tegemeo

Institute’s data processing between the 2006 version of the data used in Suri (2011) and the

dataset that is now publicly available.

Table C.1 presents summary statistics of key control variables across years and data

sets. Overall, these control variables have similar means and distributions. The biggest

differences appear in the 2004 data, for households’ fertilizer application rate (Fertilizer),

hired and family labor (Hired labor and Family labor, respectively). This is consistent

with the notion that Tegemeo Institute applied further data cleaning to the 2004 data set

after sharing it with the author, while the 1997 data set was already finalized.

The other difference to note is the number of observations in the two data sets. The

final balanced panel in Suri (2011) has 1202 households, while our panel only has 1197

households. This difference arises because some households have missing values for control

variables, while they are non-missing in the Suri (2011) data.12 Overall, the differences

between the data sets are relatively minor and should not make a substantial difference if

the econometric results are reasonably robust. The fertilizer expenditures variable in 2004

differs more from Suri (2011) than the other variables in the study. We discuss one potential

reason for this discrepancy in Section C.1.

C.1 Fertilizer price data

The data have a large number of missing values for district-level fertilizer prices, likely evi-

dence of how thin the ag-input market was in the mid-1990s. Suri (2018) reports addressing

the missing values by replacing them with the fertilizer median for that fertilizer type, but

some districts have insufficient observations to compute the district-level median. For these

districts, we use the same process as suggested for missing price data and assign them the

sample median price for that fertilizer type.

11Interested readers can request access to the Open Access Data from Tegemeo Institute’s website
12We lose two households due to missing labor variables (one missing in 1997 and the other in 2004). We

further lose three households due to missing data for the household head’s education.
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Table C.1: Comparison of key variables between our dataset and Suri (2011)

1997 2004

Obs.
Mean
s.d.

Min
Max Obs.

Mean
s.d.

Min
Max

Panel A: Suri (2011)

Hybrid 1202 0.66 0 1202 0.60 0

0.47 1 0.49 1

Acres 1202 1.90 0.020 1202 1.96 0.040

3.22 66.1 2.69 49

Seed rate (kg/acre) x 10 1202 9.58 0.0050 1202 9.07 0.75

7.80 125 6.86 168.8

Land prep (Ksh/acre) x 1000 1202 960.9 0 1202 541.4 0

1237.1 8038.6 1022.8 16000

Fertilizer (Ksh/acre) x 1000 1202 1361.7 0 1202 1354.6 0

2246.3 38585.2 1831.2 20660

Hired labor (Ksh/acre) x 1000 1202 1766.0 0 1202 1427.4 0

3346.4 71327.2 2130.3 19200

Family labor (Ksh/acre) x 1000 1202 293.2 0 1202 354.3 0

347.5 5306 352.7 3052.5

Panel B: TGCLMM (2022)

Hybrid 1197 0.66 0 1197 0.60 0

0.48 1 0.49 1

Acres 1197 1.91 0.020 1197 1.96 0.040

3.22 66.1 2.69 49

Seed rate (kg/acre) x 10 1197 10.1 0.0050 1197 10.9 0.25

8.36 125 8.09 75

Land prep (Ksh/acre) x 1000 1197 2169.3 0 1197 1182.2 0

4905.1 160771.7 1649.9 16000

Fertilizer (Ksh/acre) x 1000 1197 1426.3 0 1197 3182.3 0

2394.7 43408.4 6610.2 89600

Hired labor (Ksh/acre) x 1000 1197 1661.3 0 1197 1992.4 0

3219.9 69742.2 2962.2 26000

Family labor (Ksh/acre) x 1000 1197 292.4 0 1197 560.9 0

347.7 5306 767.6 17624
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In the 2004 data, a few other complications arise. Suri (2018) mentions several data

files that have different names in the open access version of the data.13 Note, however,

that fertilizer prices also appear in the household-level dataset hh04, where it is elicited in

a way similar to the 1997 data: “What is the price of a [ fertilizer unit ] bag of [

fertilizer type ] in this area?”

“Merge on fertilizer prices using the fertilizer prices file (key 5) and, as above,

merge by district, year, fertilizer type and fertilizer unit. Use the variable pfert

to value the fertilizer quantities in KShs.”

Furthermore, merging on district, fertilizer type, and fertilizer unit is not entirely straight-

forward. There are a few differences between the coding used for input units and input types

between the datasets tfert04 and fert04. Table C.2 shows the mismatches between the

two datasets to be merged. The first three columns are field-level reports of the amount

of a specific fertilizer type the household used, while the last three were elicited at the

household-fertilizer type level. Columns 3 and 6 show the number of fertilizer observations

in each category. While some of the discrepancies are very minor (e.g. grams only affects 4

fields), 80 fields have fertilizer use in gorogoros (a local unit corresponding to roughly 2 kg)

but their fertilizer prices are reported in another unit, and 151 households report fertilizer

prices in 5, 10, or 25 kg bags—a unit that does not exist in the field-level data.14

We address this by computing median prices at the district-fertilizer type-fertilizer unit

level, converting these to a per-kilo price, and merging these prices onto the field-level data by

household id (rather than actually merging on district, fertilizer type, and fertilizer unit).15

We do not know whether Suri (2011) noticed this discrepancy, as it is easy to miss. This is

therefore another possible reason why our two datasets are not identical.

13The dataset pricefert does not exist. The open access data instead contain a dataset called tfert04,
which contains household- and fertilizer-type-level fertilizer price data. We assume that this is the fertilizer
price data Suri (2018) is referring to, and compute district- and fertilizer-type-level prices based on the
variable inputpr.

14There are similar discrepancies in the fertilizer type categories, but they do not end up being relevant
in the sample of fertilizer-using maize fields/households.

15For the small number of households who report more than one purchase instance of a given input type,
we use the mean of the implied per-kilo prices.
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Table C.2: Mismatched fertilizer units across two datasets

fert04 tfert04

Unit Label Frequency Unit Label Frequency

1 90 kg bag - - - -

2 kg 2,712 2 kg 795

3 litre 100 3 litre 65

4 crate - - - -

5 numbers - 17 number -

6 bunches - - - -

7 handfuls - - - -

9 gorogoro 80 - - -

10 tonnes - 10 tonnes -

11 50 kg bag 1,487 11 50 kg bag 889

12 debe - - - -

13 grams 4 4 gram 2

14 wheelbarrow - 14 wheelbarrow -

15 cart - 15 cart -

16 canter - - - -

17 pickup - - - -

- - - 5 5 kg bag 1

- - - 6 10 kg bag 70

- - - 7 25 kg bag 80

- - - 16 days -

Notes: The frequencies in columns 3 and 6 correspond to observations on fertilizer
input use and purchases, as we are not concerned about mismatched labels for
other inputs.
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